
AL-TP-1993-00.12 D'O-,-
ELECTEN

AD-A2 64 320 MAY17 19930

AN OBJECT-ORIENTED TUTOR TO

A TEACH TROUBLESHOOTING

R
M
S William R. Murray

T
R FMC Corporate Technology Center

1205 Coleman Avenue, Box 580
0 Santa Clara, CA 95052

N
G

HUMAN RESOURCES DIRECTORATE
TECHNICAL TRAINING RESEARCH DIVISION

7909 Lindbergh Drive

A Brooks Air Force Base, TX 78235-5352

B
0
R April 1993

A
T Final Technical Paper for Period February 1991 - March 1992

0
R Approved for public release; distribution is unlimited.

y

.• 5 14 U • •• 93-0897

AIR FORCE MATERIEL COMMAND
,,_,_,_,,,_BROOKS AIR FORCE BASE, TEXAS

NOTICES

This technical paper is published as received and has not been edited by the
technical editing staff of the Armstrong Laboratory.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related procure-
ment, the United States Government incurs no responsibility or any obligation
whatsoever. The fact that the Government may have formulated or in any way
supplied the said drawings, specifications, or other data, is not to be regarded by
implication, or otherwise in any manner construed, as licensing the holder, or any
other person or corporation: dr as conveying any rights or permission to manufac-
ture, use, or sell any patented invention that may in any way be related thereto.

The Office of Public Affairs has reviewed this paper, and it is releasable to
the National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This paper has been reviewed and is approved for publication.

KURT W. STEUCK
Contract Monitor

d0ODGER D. BALLENTINE, Colonel, USAF
hief, Technical Training Research Division

REPORT DOCUMENTATION PAGE OMB Nporo ver

4 2 22)2.4302, a4nto~D t '%- D"'.,, c)of %ill "a .:V

1. AGENCY USE ONLY (Leave blank) I2, REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1993 Final February 1991 - March 1992

4. TITLE AND SUBTITLE j, FUNDING NUMBERS

C - F33615-91-C-0004
An Object-Oriented Tutor to Teach Troubleshooting PE - 62205F

6. AUTHOR(S) PR - 1121
TA - 09
WU- 77

William R. Murray
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 18, PERFORMING ORGANIZATION

REPORT NUMBER

FMC Corporate Technology Center
1205 Coleman Avenue, Box 580
Santa Clara, CA 95052

"'9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING. MONITORING
Armstrong Laboratory AGENCY REPORT NUMBER

Human Resources Directorate
Technical Training Research Division
7909 Lindbergh Drive
Brooks Air Force Base, TX 78235-5352 AL-TP-1993-0012

111. SUPPLEMENTARY NOTES

Armstrong Laboratory Contract Monitor: Kurt W. Steuck, (210) 536-2034

12a. DISTRIBUTION 'AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report describes a general approach to implementing troubleshooting tutors for complex hydraulic-
electronic-mechanical systems in wide use throughout industry and the military. With this approach, user
interfaces are rapidly constructed from scanned-in schematics, and animation is easily added with hypermedia
tools to show the internal operation of the device. Object classes and methods are used to describe device
structure and to implement the functionality of both device components and tutor components. The object-
oriented approach facilitates reuse of these components and their portability across platforms, programming
languages, and domains. It also supports the ability to generate instructional interactions, such as explanations,
directly from device and component descriptions.

""14. SUBJECT TERMS 15. NUMBER OF PAGES

Artificial intelligence Troubleshooting 66
Computer-based iraining 16. PRICE CODE
Training

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE j OF ABSTRACT

Unclassified Unclassified Unclassified UL
N¶N 7540-01-280-5500 Standard ofrm 298 (Rev 2 89)

2.'S !{)

CONTENTS

1. Introduction 1... I

2. Object-oriented design ... 4
2.1 Object-oriented programming : 4

2.2 Benefits for this application .. 5

3. The subject matter representation .. 7

3.1 Device parts and their relationships .. 7

3.2 Device cycle of operation .. 8
4. The qualitative model of device operation .. 10

4.1 Modeling normal cperaidon ... 1O

4.2 Modeling faulted operation .. 12

5. The fault-space model of troubleshooting .. 13

5.1 Generating a fault-effect table .. 14

5.2 Using the table to track candidates and choose tests 15

6. Explanations and assessments from qualitative models 18

6.1 Generating explanations of device operation 18
6.2 Generating explanations of troubleshooting actions 18

6.3 Generating test questions and cases for assessment 19

7. A user interface that shows device parts and animation 20

7.1 Capturing schematics and adding animation and interactive capabilities 21

7.2 The graphics interface in the Lower Hoist Tutor 23
8. Interpreting student performance .. 25

8.1 A generic representation of target skills 26
8.2 Representing skill acquisition and tutor uncertainty 26
8.3 Representing generalized student capabilities 31
8.4 Using endorsements to make decisions 32

9. Controlling the tutor with a dynamic planner ... 32
9.1 The plan representation .. 33
9.2 Plan generation ... 35
9.3 Plan revision ... 37 _cc.'•,
9.4 Planning rules and plan critics ... 39 NTIS CPA- & ,

uii D llt Ab
9.5 Integration of the planner and student model 39 0110 .. ,

10. Knowledge acquisition tools .. 421 Ju ;ti,

10.1 Knowledge base debugging tools ... 42 ByBy
10.2 Application of machine learning algorithms 43 Dstrib 1•--.. .

11. Related work ... 43....
Avdd ifil v(l

D1%1 i Spti

M1

12. C onclusion 44

A cknow ledgem ents .4.. 45

References .. 46

Appendix I-Implementing semantic networks with objects 48

I. 1 ISA and PART semantic networks ... 48

1.2 Implementation in an object-oriented language 52
Appendix H-An object-oriented implementation of the ESM 54

iv

List of Figures

Figure 1 Schematic of lower hoist 3

Figure 2 A portion of Lhe class hierarchy-of parts
in the Lower Hoist Tutor 7

Figure 3 Representation of device subcycles in
Lower Hoist Tutor 9

Figure 4 Example of two connected parts showing port
connections 11

Figure 5 Example where model normal operation will not
terminate ii

Figure 6 A simple decomposition of troubleshooting skills 20

Figure 7 Overview of approach to building graphical device
simulation 21

Figure 8 Implementation of Lower Hoist Tutor on MacIvory
Platform 24

Figure 9 Decomposition of troubleshooting into subskills 27

Figure 10 Sample part hierarchy 31

Figure 11 Sample lesson plan showing plan representation 34

Figure 12 An ISA hierarchy 48

Figure 13 A PART-OF hierarchy 49

Figure 14 Object hierarchy to implement inheritance of
ISA hierarchy 50

Figure 15 Linked instances of class concept hierarchy to
represent class-subclass-member relationships
in ISA hierarchy 51

Figure 16 Top level class hierarchy in object-oriented
implementation 52

List of Tables

Table 1 Sample fault-effect table for the lower hoist
domain 15

Table 2 One set of endorsement reliability classes 29

V

PREFACE

The mission of the Intelligent Training Branch of the
Technical Training Research Division of the Human Resources
Directorate of the Armstrong Laboratory (AL/HRTI) is to design,
develop, and evaluate the application of artificial intelligence
(AI) technologies to computer-assisted training systems. The
current effort was undertaken as part of AL/HRTI's research on
intelligent tutoring systems (ITS) and ITS development tools.
The work was accomplished under workunit 1121-09-77, Machine
Learning Techniques. The proposal for this research was
solicited using a Broad Agency Announcement.

vi

L, Introduction

This paper presents an object-oriented approach to implementing tutors that teach

troubleshooting of complex machines. Such a tutor can be used within industry or the

military as either a classroom aid or as a standalone instructional system. As a classroom

aid it can be projected overhead to show the internal operation of a complicated system of

hydraulic, electronic, and mechanical parts. As a standalone system it can provide students

with practice on troubleshooting the system. Students can insert faults and see how the

computer-based tutor solves them, or practice troubleshooting on faults the tutor has

selected. The tutor can help the student with feedback and hints, taking over if necessary.

Alternatively, the classroom instructor can provide assistance and the computer system can

serve just as a practice environment.

The approach is illustrated with the implementation of the Lower Hoist Tutor. This tutor

shows the internal operation of a complex hydraulic-electrical-mechanical system under

both normal conditions and when one or more faults have been inserted. It can also

demonstrate troubleshooting when a student has inserted a fault into the device.

Conversely it can provide feedback on a student's troubleshooting when the tutor has

inserted a fault into the lower hoist. The tutor can determine when troubleshooting actions

are irrelevant or redundant, suggest the best action to perform next, and take over to

diagnose the fault if the student reaches an impasse.

This lower hoist is one of the fifteen major assemblies of FMC's Mark-45 naval gun

mount. A schematic of the lower hoist assembly is shown in Figure 1. It contains about

40 parts consisting of hydraulic valves, electrical solenoids and sensors, and mechanical

gears and latches. The internal components of the Mark-45 and the lower hoist assembly is

typical of many systems found within the military. Other similar systems include FMC's

Mark-13 and Mark-26 launching systems and the hydraulic equipment used in FMC's

harvesters. Another example of a similar domain is the helicopter bladefold domain used

by Towne and Munro's IMTS (Towne and Munro, 891.

The approach described is generic to all assemblies of discrete-state parts where

measurements are binary-valued. This includes logic gates that are high or low, as well as

hydraulic valves and pipes that measure high pressure (also called PA, or pressure applied)

or low hydraulic pressure (also called TANK). Parts can have any number of discrete

m • u I | | II 1

states. A hydraulic valve might have three states (left, center, and right) for example.

Extensions can be easily made to the design if measurements can have multiple discrete
outcomes. Some parts that have an infinite number of states can be modeled as being in

one of several discrete states, in which the design still applies. The design does n)t apply
to time-varying real-valued systems, such as electronic oscillators.

The tutors constructed are intended to teach troubleshooting based on a thorough

understanding of device operation. A model of troubleshooting that is generic to the

domains described above is part of the design. The model assumes that only one fault is

inserted into the model at a time. The device model can qualitatively model any number of
faults but the troubleshooting approach can handle only one. A more complicated model-

based troubleshooting approach, such as that described in [De Kleer and Williams, 87],

could have been incorporated but it would significantly add to the complexity of the tutor. It
is also not clear whether or not debugging multiple unrelated faults is an important
troubleshooting skill.

This design is described in enough detail that is should be readily implemented in most

object-oriented languages and on most platforms, such as the Macintosh or IBM-PC, that

support HYPERCARD-like graphics. The Lower Hoist Tutor. used as an example of the

object-oriented approach to building a troubleshooting tutor, was implemented on the

Macivory. The LISP portion of the rMachine was used to implement the qualitative models

of the device and of troubleshooting. The Macintosh portion of the machine was used to
implement the graphics interface in SUPERCARD, which is essentially an improved

version of HYPERCARD.1

The first part of this report describes how such a system can be implemented, using the

Lower Hoist Tutor as a working example of such a system. The second part (Sections 8,

9, and 10) describe extensions to the Lower Hoist Tutor that are not fully implemented.2

ISeveral trademarks are mentioned in this report. Macintosh. Hypercard, and HyperTalk are registered

trademarks of Apple Computer. Inc. Supercard and SuperTalk are trademarks of Silicon Beach Software.

Inc. Spinnaker PLUS is a trademark of Spinnaker Software Corporation. ToolBook is a trademark of

Asymetrix. Macivory and Ivory are trademarks of Symbolics, Inc.
2Those parts of the design described as "extensions" have not been fully implemented. All other aspects of

the design have been fully implemented in the lower hoist domain, unless stements are made to the

contrary.

2

The extensions for planning and student modeling have been partially implemented but

there is no implementation yet for the extensions for knowledge acquisition.

ZII -LO

Figure 1. Schematic of lower hoist

These extensions to the Lower Hoist Tutor provide new capabilities to plan lessons and

track student progress. By incorporating the ability tu plan dynamically the tutor need not

just be a simulation environment coupled with a purely reactive tutor. Instead, it can

generate customized lesson plans and revise them during instruction as the tutorial situation

changes. The plan and its revisions are designed to fit the student, so the accuracy of the

tutor's model of the student is important. Although a numeric student can be used a non-

numeric representation of uncertainty, called an endorsement-based student model, better

supports the dynamic planner. These extensions--the planner and endorsement-based

student model-are explained more fully in Sections 8 and 9. The key point is that they

3

provide the tutor with greater autonomy and an ability to pursue instructional goals. For

example, a lower hoist tutor with these extensions could be deployed shipboard, where one

use would be to provide rl.•sher courses that are tailored to individual needs.

The rest of this report presents the Lower Hoist Tutor and a suggested approach to building

similar tutors. Section 2 provides background on object-oriented programming and how it

sup,-.rts portability, reusability, and extensibility in the tutor design. Section 3 describes

how knowledge about the device is represented. Section 4 explains how a qualitative

model is used to predict normal and faulted operation of the device. A separate model of

the troubleshooting process is described in Section 5. That model is used to demonstrate

troubleshooting or evaluate student troubleshooting. Section 6 describes how domain-

independent instructional activities can be implemented. In this way explanations and tes:

questions can be generated automatically from device descriptions. Section 7 describes

how the use of a HYPERCARD-based graphics interface greatly simplifies the building of

a user interface that incorporates part schematics.

The proposed extensions to the Lower Hoist Tutor are described in Sections 8, 9, and 10.

Section 8 describes the addition of an endorsement-based student model to track student

progress. Section 9 adds a dynamic planner for control. Section 10 explores extensions

for knowledge acquisition. Section II explains how the approach presented here builds on

earlier work in intelligent tutoring systems. Section 12 summarizes the key features of this

design and its contributions.

2. Object-oriented design

This section provides a brief review of object-oriented programming and explains how

object-oriented programming supports portability, extensability, and code reuse of tutor

and device components.

2.1 Object-oriented programming

Classes in an object-oriented programming language such as C++, CLOS (Common LISP

Object System), or Ada, provide a user-defined kind of data structure. A class is similar to

a structure that defines slots that must be present in that structure. One difference between

a class and a structure is that the class can associate methods with objects of that class. For

example, we can define either a data structure or a class to represent complex numbers.

Both can specify that objects of that structure or class will have two slots, one for the real

part and one for the imaginary part of the complex number. However, the class can also

4

define functions and procedures that apply only to objects that belong to that class. Such
functions and procedu.res are the methods for that class. Methods for the complex number
class could be defined to return polar coordinates. These methods would not apply to
objects of other classes. In summary, classes define both a data structure and associated
procedures and functions for the data structure.

Classes can be defined as specializations of other classes. Such classes inherit the slots and

methods of their parent classes. This means that they have the same slots as the parent and
the same methods, unless they redefine the slots or methods. Any redefined slots or

methods typically override the inherited ones unless more complicated mechanisms for
combining local and inherited methods are used. The more specialized class can also define
new methods or slots that do not apply to the more generic class. One could define a class
window that draws a window on a screen and then a more specialized class labeled-
window that also adds a label to the window. It could do this by first calling the method

for drawing the basic window and then calling its own method for adding the label.

2.2 Benefits for this application

Classes and methods provide the following general benefits:

1. modularity--methods that should not be called from outside of a class can be hidden
from outside users. The implementor is free to change the internal implementation as
long as the interface methods defined for the class are unaffected.

2. code reusability--objects that share functionality with other objects can inherit code

and just change the methods that do not apply, or add new methods for what is
missing, as in the window example above.

3. extensability-a user can create a new class that inherits slots and methods from

some other class. The new class can define methods that call the inherited methods
within methods of the same name. So instead of just replacing inherited methods the

new methods can build on them.

4. data abstraction-a description of the classes and methods of a system provides a

useful explanation of how the system operates without becoming overly immersed in
implementation details.

5

The specific benefits for building intelligent tutoring systems such as the Lower Hoist

Tutor are:

1. modulariry--the implementation of methods defined for the device simulation or

other parts of the tutor can be hidden from the user.

2. code reusability-a library of object classes can be built for the common hydraulic,

mechanical, and electrical parts of a system. New assemblies of the system can be

rapidly built up using instances of the library classes. Thus the classes used in the

Lower Hoist Tutor could be reused for other assemblies of the Mark-45.

3. extensability-if a generated instructional explanation is not quite appropriate a

method can be defined to take the output and alter it to be more appropriate for a

particular application.

4. data abstraction-the description of the approach to building tutors such as the

Lower Hoist Tutor will be given primarily at the level of classes and methods.

Although the implementation of the Lower Hoist Tutor is in CLOS the same design

applies to other object-oriented languages (e.g., C++).

The key advantage is code reusability. Once the first implementatiGi has been created the

next implementation of a similar system is much faster as classes with methods describing

part behavior can be reused. This is a major advantage in complex systems such as the

Mark-45. The assembly shown in Figure I is just one of 15 major assemblies. The six

sheets of logic circuits that control the solenoids have not been shown. Each assembly

similarly has multiple electrical and hydraulic schematics associated with it. Altogether the

Mark-45 has over 23,000 individual parts. Many of the parts in systems suc,. as the Mark-

45, Mark-13, and Mark-26 share common components such as solenoids, sensors, and

pilot valves. Thus much can be gained if we can reuse objects describing device

components or tutor components.

Obiect classes and methods also facilitate the representation of semantic networks. These

networks are used to represent device structure and operation, as described in the next

section. There are some subtleties to the impleme ,tion that are suppressed in the

discussion that follows. These details can be found in Appendix I.

6

3. The subject matter representation

This section describes the subject matter representation of the device in more detail. The

lower hoist domain is used as an example to illustrate what these representations look like.

3.1 Device parts and their relationships

A class hierarchy of part types and the actual parts used in the device is required for the

qualitative model. Methods that define the normal and faulted operation of part types are

defined for the different classes. These methods can be reused for other assemblies of the

same device or for other devices that incorporate similar components. Examples from the

lower hoist domain should clarify these points.

PART

ELEX~ICAL HYOJACJL[C EIATL
PART PART PART

SE R OLEOI I
SEORSOENM PISTONS VA •ES

CHAIN
IAND

IK16 PAWLS[T"'1I 'U ALU S ASSEMBLY

S17Lai

CHAIN
AND

PAWLS

PISTON 2-STATE :AELATCH
VALVES VALVES VALVE~S

PILOT SOLENOID
UCKI IJC22 VALVES YA~kES

UVES UVEEI UVD1 UMde

Figure 2. A portion of the class hicarchy of parts in the Lower Hoist Tutor

7

Figure 2 shows a portion of the class hierarchy of the parts used in the device model of the

Lower Hoist Tutor. Methods for simulating the operation of each part type are defined for

part classes when they cannot be inherited. For example, a simulate-operation method
is defined for the class 3-state valves that would apply to UVK1 and UVK2 if no

simulate-operation method was defined for the class solenoid valves. However

since solenoid valves are a special kind of three-state hydraulic valve, one in which control

is achieved by electrical means rather than by hydraulic means, a new simulate-

operation method has been defined for the class solenoid valves. This new method

overrides the inherited method.

These methods are reusable in the following sense. Most of the component types in the
lower hoist assembly are used in other assemblies of the lower hoist. To implement the

functionality of another assembly that uses the same parts as the lower hoist only new

instances for the parts need be created. The instance descriptions will have new slot values

to describe part connections but no new classes need to be defined. It is as if we have

created a software library describing the operation of solenoids, sensors, etc. for the lower

hoist which applies to all assemblies. Similarly, there are six sheets of schematics for the

electrical circuits that control the lower hoist solenoids. They all share common

components such as logic gates, buffers, and solenoid drivers. Once the classes for one

sheet have been defined they can apply to the remaining five sheets, significantly reducing

the amount of work that must be done to implement the whole set.

In addition to methods to simulate part operation, additional methods are defined to reset

parts when starting the simulation, to test the values of port outputs and inputs, and to

insert faults into parts. These wiUl be discussed more as we talk about the qualitative

simulation.

3.2 Device cycle of operation

Typically a device such as the lower hoist can operate in different modes. For example, the

lower hoist can operate to load or unload ammunition. The Lower Hoist Tutor currently

only models the load cycle of operation but the discussion of how to represent cycles

applies to other operating modes also.

Each cycle can be broken down into smaller units called subcycles. For example, in the

lower hoist load cycle the first subcycle engages a drive coupJ;ng that connects two

driveshafts in preparation for the second subcycle. In the second subcycle a rack piston

moves up, rotates both drive shafts, and causes a chain and pawls assembly to raise

8

ammunition held between the pawls. The third subcycle drops the hydraulic pressure used

in the first subcycle. The fourth subcycle disengages the drive coupling connecting the two

drive shafts in preparation for the fifth subcycle. In the fifth subcycle the rack piston

retracts. The last subcycle drops the hydraulic pressure used in the fourth subcycle.

These subcycles are all represented as instances of the class device subcycle, as shown

below:

DEVICE SUBCYCLE
!

I
I I II

ENGAGE I 1 I
COUPLING DROP ENGAGE RACK

DISENGAGE RACK ENGAGE LATCH RETRACT
LATCH EXTEND COUPLING DISENGAGE ENGAGE

COUPLING LATCH

Figure 3. Representation of device subcyles in Lower Hoist Tutor

Each subcycle in turn can be broken down as individual part changes such as a solenoid

energizing or a valve moving from one position to another. These part state changes are

not represented explicitly as the Lower Hoist Tutor can generate them when necessary by

running the qualitative model of the device, discussed in Section 4. Each subcycle begins

with some external event-in this case solenoids energizing-and ends when the device

reaches a quiescent state. These external events that start a subcycle are called its initiation

conditions and are stored in a slot of the same name. These events occur only if certain

preconditions are true. Typically these preconditions ensure that the device is in a safe

condition for the subcycle to start and that previous subcycles have completed successfully,

as earlier subcycles typically enable later ones. These preconditions are stored as the

preconditions slot of a subcycle object. Another slot, called the postconditions slot,

is used to test to see if a subcycle completed successfully.

As an example in the lower hoist domain, a precondition of the second subcycle is that the

drive coupling be engaged and the latch retracted. If the drive coupling were not engaged

then the rack piston's motion would not be coupled to the chain and pawls assembly. If the

latch were still engaged then mechanical damage to the lower hoist would occur. But the

subcycle prior to this second subcycle should preclude either possibility. The

postconditions for the extend rack subcycle are that the rack is extended, as indicated by a

9

particular sensor. The subcycle starts when its initiating conditions are true. This happens
when the lower coil of the first solenoid assembly is energized and its upper coil is

deenergized, while simultaneously the lower coil of the second solenoid assembly is

deenergized and its upper coil is energized.

4. The qualitative model of device operation

In this section we describe how both normal and faulted operation are modeled for the

device. With this capability the tutor can demonstrate how a device operates with zero,

one, or any number of faults inserted. Such a capability, when coupled with the graphic

display described in Section 7, allows a student to visualize the operation of the device in a
way that is not possible with the static viewgraphs commonly used for this purpose.

4.1 Modeling normal operation

Each part can be thought of as a black box with input ports, output ports, and a current

state. We assume the number of states is discrete, but it can be a large number. Typically

the part will have two states (e.g., a NAND gate with outputs 1 or 0) or three states (e.g., a
pilot valve that is in either the center, right, or left positions). But a part could have

additional states describing fault modes.

Associated with each part type are rules describing its normal operation. For the lower
hoist there are rules describing how solenoids operate, how pilot valves operate, how a

drive coupling operates, etc. These rules describe what the new state of a part will be given

its current inputs and current state. For example, a NAND gate with inputs I and l will
have output 0. A piston with PA (high pressure) at the top and TANK (low pressure) at

the bottom will shift down, producing a mechanical output (down). The piston may be

coupled to a sensor that is energized when its mechanical input is up and deenergized when

it is down. The new outputs of a part can be either constant values or functions of the
inputs. For example a multiplexor can connect outputs to inputs so that the output value of

one port is the same as the input value of the port it is connected to. Writing these kinds of
behavior rules for discrete-state parts is fairly straightforward.

Although the rules are associated with part types, specific part connections are associated
with part instances. These describe how the input and output ports of each part are

interconnected. In the figure below the two output ports of part I are connected to the two

10

input ports of part 2. There are no connections to the inputs of part 1 or the outputs of part

2, so the inputs to part 1 are set externally, by the tutor or student.

input port I output port I input port I output port 1

input port 2 output port 2 input port 2 output port 2

Figure 4. Example of two connected parts showing port connections

Modeling normal operation is straightforward. Given some external inputs to a part the

new state and output of the affected part is predicted using the rules of normal operation.

Next, those outputs that are different from before are propagated to the input ports of any

connected parts. Every time a part has an input value change its new state and outputs are

determined. Every time a part's outputs change from previous values they are propagated

to all connected parts.

There is no guarantee that this process will terminate if there are cycles in the part

connections. For example, consider an inverter connected to itself as shown in Figure 5.

If its input is 1 then its output should be 0 and vice versa. But if the output is connected to

the input the output cannot be predicted. The process described above will change the

output to 1, then to 0, then to 1, and so on, never terminating. But this theoretical concern

is not a problem when modeling properly designed physical devices such as the lower

hoist.

Figure 5. Example where model normal operation will not terminate

11

4.2 Modeling faulted operation

The algorithm that models normal operation can also model faulted operation. To do this

the behavior rules that model how part types normally operate (the simulate-operation

methods) must be changed. They must also model how parts operate when in various fault

modes. For example, NAND gates can stick in a I or 0 position, and a three-state valve

might not be able to enter the left position because it can no longer engage a slot. The

methods describing how logic gates or three-state valves operate could be modified to

include these fault modes.

A more economical way of modeling common faults is to use generic faults for discrete-

state parts. This is the approach used in the Lower Hoist Tutor, which models the

following three kinds of generic faults:

1. sticky-statefaults-a part sticks in a position once it has entered that position.

2. always-statefaults-a part starts in a position and never moves from that position.

3. cannot-enter-statefaults-a part cannot enter a particular position.

Some faults produce equivalent behavior for certain parts and states. For example, a

sticky-state fault where a valve sticks in the right position is equivalent to an always state

fault if that valve is initially in the right position. But it they differ if the valve starts off in

the left position. In that case the device will cycle normally up to the point that the valve

has entered the right position and would normally enter some other position. The cannot-

enter-state fault also reduces to one of the other two kinds of faults if there are only two

states the part can be in. But if a part can be in three or more states then this kind of fault is

different. For example, a three-state pilot valve may not be able to shift left even though it

can shift to the center or right position. Note that the always-state fault models some

common faults for logic circuits, such as stuck-at- 1 or stuck-at-0 outputs.

In the Lower Hoist Tutor these generic faults are modeled by altering the behavior rules for

the different part types to account for the generic faults. The modifications are similar for

all part rules as opposed to modeling specific fault modes for each different fault type. For

example, to model a sticky-state fault a behavior rule would first check to see if the current

state is the one a part sticks in. If it is the rule would not change the part state or outputs.

Otherwise the normal rule of behavior would be followed. For the always-state rule the

12

modification is similar. However, the part is forced into the frozen state as soon as the

fault is inserted--regardless of its current state, and then the outputs are propagated. For

the cannot-enter-state fault the normal rules of behavior are ignored only when they specify

the new state to be the prohibited one.

The generic fault methods could also have been programmed by providing a simulate-

faults method that could call the simulate-operation method that would model only

normal operation. Each part type would also need a restore method to restore the last

state and outputs. The simulate-faults method would just call the simulate-operation

method if no faults have been inserted into a part. If a sticky-state fault had been inserted

the method would do nothing if the part was in its frozen state, otherwise it would call the

simulate-operation method. For an always-state fault the method operates similarly but

the part would be forced into the frozen state as soon as the fault was inserted. For the

cannot-enter-state fault the simulate-faults method would just call simulate-

operation. If the new state were the prohibited one then it would call restore to undo the

effects of simulate-operation and it would not propagate the part's outputs. Otherwise the

changes would not be undone and the changed outputs would be propagated.

The main advantage of this alternate approach is that the simulate-faults method could be

defined just once for the class part. It then applies to all parts, regardless of their part

types. So the simulate-operation methods, which differ for each part type, need not be

changed. Furthermore, newly defined part types can also be modeled with faults provided

they have a simulate-operation and restore method. And it would be easy to add new

generic kinds of faults, for example, to model broken connections or inverted outputs, that

are not currently present in the Lower Hoist Tutor.

5. The fault-space model of troubleshooting

In this section we present a general approach to diagnosis for systems of discrete-state parts

that have discrete-valued outputs. Although the approach has been implemented in the

Lower Hoist Tutor for only binary-valued outputs the approach can be generalized to

systems with discrete-valued outputs. This diagnosis approach tracks faults that are

consistent with information gathered and recommends optimal troubleshooting actions. It

can also be used to evaluate student actions to detect troubleshooting tests that are

suboptimal, irrelevant, or redundant.

13

Intuitively, the approach depends on generating a table that relates faults to symptoms.

Using this table allows faults that are not consistent with the test results to be eliminated.

The best test to perform next can be chosen by evaluating the possible consequences and

cost of each test.

5.1 Generating a fault-effect table

The fault-effect table is generated by enumerating all possible combinations of fault types,

parts, and states that are modeled. Each row of the table is generated by inserting a single

fault into the device, cycling the device, and then recording the measurements that result.

Not all fault types are distinct so the number of rows can be reduced by only representing

unique fault-part-state combinations. These are the rows of the fault-effect table.

For example, assume we are modeling a system with only two gates A and B, two kinds of

faults STUCK-AT-I and STUCK-AT-0, and only three possible test points. Then the

fault-effect table would look like this:
Fault Test point I Test point 2 Test point 3

output A stuck at 0

output A stuck at I

output B stuck at 0 1 1 1 1

output B scuck at I I I I _I

The cells of the table would be filled in by inserting the faults into the system and recording

the values measured at the test points.

The Lower Hoist Tutor models nineteen separate parts. Each part can have any of the three

generic kinds of faults affecting any one of its states. If all fault-part-state combinations

were unique and each part had three states there would be 3 * 19 * 3 or 171 rows in the

table. But since many parts have only two states and since many fault-part-state

combinations are equivalent only 92 rows are actually generated, about half the estimate

above.

The columns of the fault-effect table are the tests or observations that can be made.

Typically they include the results of pressure gauge tests and logic probes. They can also

include other kinds of tests, such as auditory tests (e.g., listening to see if solenoids click),

or visual observations (e.g., watching to see if an actuator moves) provided that the

expected results can be predicted from the qualitative model.

14

Consider a small example from the lower hoist domain, where we model only a small
number of fault-part-state combinations, as shown in Table 1. Consider the first row for
the fault where the pilot valve UVK3 sticks in the right position. With that fault the

coupling will engage, the latch will retract, and the rack piston will extend when the lower
hoist is cycled. But the subcycle to engage the latch prior to retracting the piston will not

complete since that requires that UVK3 shift to the left position and it is now stuck in the

right position. That subcycle is initiated when LHK2-LC2 is deenergized, LHK2-LCl is

energized, and LHKI-LCI is still energized. The solenoids will still be in that state when

testing is performed. So the first three columns are OFF, ON, ON as shown. As the drive

coupling is still engaged and the latch still retracted, drive coupling disengaged sensor

SIK20 is OFF and latch retracted sensor SIK16 is ON, as shown in the last two columns

of the first row. The other table entries are derived similarly, by inserting the faults shown,

starting the lower hoist cycle, and then testing the solenoid coils and sensors at the point
where the cycle stops because of the inserted fault.

Fault LHK2-LC2 LHK2-LC1 LHK1-LCI SIK20 SIK16

UVK3 sticks right OFF ON ON OFF ON

UCKI sticks up OFF ON OFF ON OFF

UVK1O cannot ON OFF OFF OFF OFF

enter left state II

SIK20 always ON OFF OFF ON ON
energized I -

Table 1. Sample fault-effect table for the lower hoist domain

5.2 Using the table to track candidates and choose tests

The fault-effect table can be used is to evaluate hypotheses for consistency with

measurements. For example, if all we know is that LHK2-LC2 is OFF and LHK2-LCI is

ON then only the first two faults are possible.3 If the student believed the problem was a

fault in SIK20 the tutor can explain that different test results would be expected if that were

the case. If SIK20 were faulted, then LHK2-LC2 should be energized (ON), but it is not.
The Lower Hoist Tutor evaluates student fault hypotheses in this manner.

30f course this assumes that or,' the faults that are modeled can occur. As the model will always differ

from the physical system in some manner there will always be some faults that are not modeled.

15

The set of fault candidates can also be tracked with this approach. Each fault candidate is

one of the unique part-fault-state combinations enumerated in the fault-table. It must be

consistent with all test results that have been taken. This set can be determined by taking

the intersection of all possible faults that are consistent with each test result. Alternatively

this set can be initialized to all possible part-fault-state combinations and then successively

reduced by removing those combinations that are inconsistent with new test results. The

Lower Hoist Tutor uses this incremental approach.

The fault-effect table can also be used to evaluate troubleshooting actions to see if they

provide new information. A test that does not provide new information has a value that can

be inferred from prior test results. In the example above, with LHK2-LC2 OFF and

LHK2-LC1 ON, it would make sense to check any of the other three possible

measurements in the last three columns to distinguish between the first or second fault. But

if all we knew was that LHK2-LC2 was energized it would not make sense to check either

LHK2-LCI or LHKI-LCI. Their results are the same for all possible faults consistent

with LHK2-LC2 ON. Instead, the possible faults shown in the last two rows of Table 1

can be distinguished by testing SIK20 or SIK16. The Lower Hoist Tutor uses its fault-

effect table in this way to comment on student troubleshooting actions whenever they are

irrelevant or redundant.

For a larger fault-effect table such as that used by the Lower Hoist Tutor there can still be

many potential tests to choose from, each of which provides new information. The Lower

Hoist Tutor recommends the test that is most likely to split the space of candidate faults.

For example, suppose the following parts could be faulted: UVK3, UVK4, UVK9, and

UVK10. If any other part had a fault it would not be consistent with our test results.

Suppose only SIK20 or SIK18 can be tested and the candidates consistent with the

possible test results are shown in the table below:

possible test possible faults if ON possible faults if OFF

SIK20 UVK3 UVK4,UVK9,UVKIO

SIK 18 UVK9,UVKI0 UVK3,UVK4

Then the Lower Hoist Tutor will prefer the second test as it is more likely to split the

candidate space of faults.

In general, the Lower Hoist Tutor chooses the test to recommend by considering the

different possible results for each test. It chooses the test that is most likely to split the

candidate space of possibly faulted parts assuming that different possible test results are

16

equally likely. For the lower hoist domain all test results are binary valued. For each

possible result the parts that could still be faulted are determined as described earlier. The
closer this number is to one-half the number of fault candidates, which would be a ratio of

0.5, the better. The test to recommend is chosen by computing a penalty score based on
this number (difference of Lhis ratio to 0.5), rank ordering the tests, and then choosing the

test with least penalty score.

An additional refinement takes into account the time required to perform tests. Cheaper
tests that provide any information are preferred to more expensive tests, even if the more

expensive tests would better split the space oi candidate faults. Recall that tests that do not
provide any information do not reduce the number of fault candidates, regardless of results,

because the test is either irrelevant or the results could be predicted from an earlier test.

The fault-effect table approach that the Lower Hoist Tutor uses has been directly adopted
from the approach used in the IMTS [Towne and Munro, 891 system and its PROFILE

diagnostic engine [Towne et al., 83]. PROFILE is a more sophisticated tool that uses an

information-theoretic approach to selecting tests. That approach takes into account part

malfunction probability, unlike the approach presented here. For example, smaller valves

are more likely to have faults than larger ones, but the Lower Hoist Tutor does not take this

into account. PROFILE also has a more sophisticated approach to weighing the cost of a

test and its potential benefits. PROFILE assigns each test a utility measure for the amount

of information gained by the test, and then divides this measure by the time required to

perform the test. The result is a measure of information gained per unit time.

The Lower Hoist Tutor use an ATMS (assumption-based truth maintenance system)
[DeKleer, 86] for caching the fault-effect table. An ATMS stores the assumptions required

to make assertions true. The fault-effect table is stored as a disjunction of the faults that

produce each possible test result So, for example, in Table 1, the test result SIK20 ON is

justified when either the fault "UCKI sticks up" or "SIK20 always energized" is present.

Thus from the ATMS we can directly retrieve the fault candidates that are consistent with a

particular test result. Without the ATMS we would have to search the fault-effect table, so

the ATMS serves as a cache. Fault candidates consistent with multiple test results are the

intersection of those consistent with each individual test result. The tutor can evaluate how
well a test splits the fault candidate space by comparii~g the fault candidates that remain for

the different possible outcomes of a test (e.g., SIK20 ON and SIK20 OFF), assuming the

17

outcomes are equally likely. All this can be done without an ATMS; the ATMS just makes

it faster.

6. Explanations and assessments from qualitative models

This section explains how textual explanations and test questions to assess student

understanding can be generated from device descriptions, rather than being pre-stored.

This approach has not yet been fully implemented in the Lower Hoist Tutor. Currently, the
tutor can only generate simple explanations, such as "UVK3 shifts right" to explain part

state changes. No test questions are currently generated although the tutor can generate

troubleshooting cases by randomly choosing fault-part-state combinations for student

practice.

6.1 Generating explanations of device operation

Explanations of part behavior could be defined as methods for each part type. Instead of

producing an explanation like "LHK2 shifts right" an explanation specific to the solenoid-

assembly part type class could be generated by a method for that class. This explanation

might be:

"The solenoid assembly LHK2 shifts to the right position because its

bottom coil (LHK2-LC2) is energized while its upper coil (LHK2-LC1) is

deenergized. This change causes PA to be ported out of the left output port

of LHK2 and into the left input port of the pilot valve UVK3."

These part type explanations could generate different levels of explanation. Section 8

discusses how as assessment of the student's understanding of each part type can be

associated with part classes. Using this assessment, which is part of the student model, the

tutor can generate detailed explanations for part types that the student has not yet

demonstrated an understanding of. Less detailed explanations could be generated for those

part types which the student appears to understand. Explanations would become more

concise as the student learned more.

6.2 Generating explanations of troubleshooting actions

The Lower Hoist Tutor does not currently provide detailed explanations for how

troubleshooting actions are chosen or how student hypotheses are evaluated. It could use a

truth maintenance system (TMS) for the latter. For example, a student fault hypothesis

(e.g., UVK3 sticks left) could be inserted into the qualitative model and then the device

18

cycled to determine the effects of the fault. If the results of the fault contradict the test

results then the contradiction could explain why the student's hypothesis is inconsistent.

Here is an example of the kind of explanation that could be generated:

"The fault could not lie in UVK3. If there were some problem with UVK3

then either the subcycle to engage the coupling and disengage the latch, or

the subcycle to engage the latch and disengage the coupling would not

complete. But these cycles have been completed since the lower hoist is

currently in the subcycle to retract the rack piston.

We know that the lower hoist is in the subcycle to retract the rack piston

since LHKl-LCI is deenergized and LHK2-LC1 is energized."

Better explanations for choosing tests could appear in this form:

"At this point we know the fault first appears in the engage coupling and

disengage latch subcycle. The only parts that change state in this subcycle

are LHK2, UVK1, UVK3, UVK4, SIK20, UVKlO, UCK2, and UVK9.

Testing either SIK20 or SIK16 will help determine where the subcycle

failed."

or in response to the choice of an irrelevant troubleshooting test:

"SIK17 indicates the state of the lower hoist rack piston. Since we have

determined that the lower hoist stopped in the first subcycle, prior to

extending the rack piston, this test is not relevant.

We know that the lower hoist is in the subcycle to engage the drive coupling

and disengage the latch since LHK2-LC2 is energized, LHK2-LCI is

deenergized, and LHKI-LCl is deenergized."

These kind of explanations are not currently generated by the Lower Hoist Tutor.

6.3 Generating test questions and cases for assessment

The skill of troubleshooting can be broken down into component skills, such as selecting

tests and interpreting results. A highly simplified decomposition is shown in Figure 10, a

more thorough decomposition is deferred until Section 8. The objects shown in the

19

semantic network of Figure 10 are implemented as objects of class skill. Methods could

be defined both to carry out each skill for demonstration purposes, and to assess student

capabilities for each skill.

CAN TROUBLESHOOT
III

CAN GENERATE CAN ELECT CAN INTIRPRET
INITIAL FAULT APPROPRIATE TEST RESULTS
CANDIDATES TESTS

Figure 6. A simple decomposition of troubleshooting skills

For example, to assess the student's ability to generate the initial set of fault candidates the

tutor would choose a fault and then present the symptoms to the student. Then the student

would have to select each part that could be faulted by pointing to it. Using the fault effect

table the tutor can determine if the selected parts are consistent and if the student has left out

any parts that could be faulted.

Similarly, the tutor could ask the student what test to perform next for various situations

where the set of possibly faulted parts is shown highlighted, and a list of previous test

results is displayed.

Finally, the student could be told the results of a test and asked to interpret the results by

indicating which parts could be faulted or not. Those parts that are initially part of the

candidate set, before the test, would be highlighted. The student would then click on those

parts that have been ruled out by the test.

7. A user interface that shows device harts and animation

The most important part of the Lower Hoist Tutor's user interface is its graphical device

simulation. The graphical device simulation shows a device assembly in color. It allows

the student to select parts with the mouse. The tutor can also highlight parts when

discussing them. Most important of all the graphical device simulation can illustrate how

parts change states through animation. The animation shows the sequence of part state

changes directly, emphasizing the causality of the changes.

20

7.1 Capturing schematics and adding animation and interactive capabilities

Figure 7 shows an overview of the process of building a graphical device simulation.

Schematics of the device assemblies are scanned in. The same assembly may appear in
multiple schematics if they show how it operates in different modes, or in different stages

(i.e., subcycles) of the same mode of operation. The scanned in schematics are cleaned up

in a paint program that allows bitmaps (i.e., collections of pixels) to be edited. The cleanup

is required to remove noise from the images or introduced by the scanning process.

r-il

Digitized images

Device simulation
Figure 7. Overview of approach to building graphical device simulation

Animation can be introduced in one of two ways. The first, flip-card animation, shows

parts only in different distinct states. For instance a pilot valve could appear in only three

different states such as left, center, and right. A different bitmap is used for each state and

only one is visible at a time. When the part changes state the bitmap for the old state is

hidden at the same time the bitmap for the new state is revealed.

21

Hypercard and hypercard-based tools such as SUPERCARD, SPINNAKER PLUS, and

TOOLBOOK are ideal for programming this kind of functionality. These tools provide an

environment for the rapid prototyping of graphics applications. Visual effects can be

introduced to fade gradually from one image to another-and provide an illusion of part

movement. Sound effects can also be added, such as metallic sounds as parts move and

engage, and whooshing sounds as pipes fill or empty.

The other approach to animation is to provide a single graphic for a part and then change

the position of the graphic to provide a continuous animation of the part moving from one

state to another. In that case the part is visible all the time and only its location changes. In

either approach all parts move with respect to a static background.

Schematics need not always be scanned in but this approach is often faster and more

suitable for curriculum integration than drawing. It may be too difficult or time-consuming

to draw complex mechanical and hydraulic assemblies where parts appear in multiple

states. For electrical schematics it may be acceptable to just cut and paste images from a

graphics library (e.g., of logic gates). In this case drawing may be acceptable. But even

then subject matter experts frequently prefer that the tutor's graphics match exactly the

graphics the students already work with. In this case scanned-in schematics are the best

approach. Of course if schematics are already online for some other use, such as

computer-aided design, then both scanning and drawing are unnecessary.

The Hypercard-based tools simplify adding color and interactivity to the schematics. Thin

colored rectangles can be used to simulate hydraulic fluids in pipes. Their color can be set

under program control. Following standard conventions red can be used to show PA
(pressure applied, or high pressure hydraulic fluid) and yellow can be used to show TANK

(low pressure hydraulic fluid). Programs can be written to group related rectangles

together, to act as one pipe, and then to change the color of the simulated pipe as the pipe
fills or empties. The Hypercard-based tools provide programming languages such as

HyperTalk that simplify this task.

Mouse sensitive regions called buttons can be placed over the parts. These can be invisible

to the student. When the student selects the button any arbitrary code can be called in the

graphics programming language. For example, text describing the part's role can be

retrieved and displayed. The buttons can also be used to answer tutor questions since the

student can just select parts by pointing and clicking.

22

7.2 The graphics interface in the Lower Hoist Tutor

The Lower Hoist Tutor is built on a scanned-in schematic for the Mark-45 lower hoist

assembly, following the process shown in Figure 7. A text window was added to upper

left hand corner of the schematic for student text input and tutor text output. Hypertext is

implem, sited in this window so that students can click on part names to retrieve part

descriptions. These descriptions may refer to other parts that can also be clicked on to

bring up their information. Parts can also be selected by mouse to access these

descriptions.

Animation was added by writing routines that show parts in one state at a time. A routine to

reset all parts to initial states at the start of a cycle was also added. The qualitative model of

the device determines the sequence of part state changes. This model can be either

implemented in the same environment or a separate environment. In the Lower Hoist Tutor

the graphics environment is SuperCard and the symbolics programming environment is

COMMON LISP and CLOS (the COMMON LISP OBJECT SYSTEM). SuperCard would

not be appropriate for the qualitative model because of its slower speed and lack of support

for user-defined object classes.

The MacIvory implementation of the Lower Hoist Tutor is shown in Figure 8. The

Maclvory is a Macintosh with an Ivory co-processor that supports the LISP programming

language and environment, and CLOS extensions for object-oriented programming. The

Lower Hoist Tutor uses the Macintosh for all graphics. Graphics routines for flip-card

animation are programmed in SuperTalk. The qualitative model of the device is

programmed in LISP and CLOS. It executes on the Ivory processor.

Communication between SUPERCARD and LISP is achieved through external commands

and external function calls (XCMDs and XFCNs). These are called from SUPERCARD

and pass LISP forms to be evaluated to the IVORY processor. Results are received as

strings by SUPERCARD.

The buttons on the bottom and right of the graphics interface shown in Figure 8 are listed

below, grouped according to functionality:

1. control of the simulation-

a. initialize-resets the qualitative model and graphics.

b. single step-shows the results of the next part state change

23

MACINTOSH for SUPERCARD

Granhical user interfacel

Calls to LISP Values returned to Supercard

Oualitative model of device

input output input output
port 1 porti1 porti1-or

input output input output
port 2 port 2 port 2 port 2

IVORY chip for LISP and CLOS
Figure 8. Implementation of Lower Hoist Tutor on Macivory platform

c. subcycle--shows the remaining steps in the current subcycle.
d. cycle-completes the entire cycle.

e. step text on/off--controls whether or not textual explanations are generated to

explain part state changes.
f. skip steps on/off-controls whether or not intermediate steps are shown for

subcycles and cycles.

24

2. simulation of troubleshooting actions-

a. measure-allows a port value to be measured

b. replace-removes all faults, if any, from a part

3. fault insertion-

a. insertfault-lets the student insert a fault in a part. The student selects the part,

the kind of fault, and the state affected.

b. place randomfault-ilets the tutor insert a fault by selecting a part, fault, and state

randomly. The student does not know what fault was inserted.

4. requests for help-

a. suggest action-the tutor explains what should be done next

b. list candidates-the tutor highlights just those parts that could be faulted given

the test results gathered so far.

c. revealfaults-the tutor explains any faults previously inserted

d. explain fault consequences-the tutor explains how the inserted fault or faults

interfered with the normal lower hoist cycle.

These buttons invoke SuperTalk commands that send LISP forms to the qualitative model.

The qualitative device model is updated and a description of the changes that occurred is

returned. These are a series of SuperTalk commands such as:

shiftPart UVK3,right

presentText "UVK3 shifts right"

showPipe "UVK3 left output to UVK4 top input",PA

These commands describe part state changes to show, parts to be highlighted, and text to

be placed in the tutor output window. These commands are executed one at a time to

complete the operation of the button pushed.

R. Internretin•g student performance

Now we begin discussion of extensions to the Lower Hoist Tutor. The extensions for

planning and student modeling have been only partially implemented. Those for knowledge

acquisition have not been started. With these extensions the tutor would follow its own

goals, create plans, and modify these plans according to student progress. First we discuss

the student model, then the planner. The student model can provide additional functionality

25

even without the planner. It could be used for automated problem selection or generation

for example.

8.1 A generic representation of target skills

The skill to be acquired is broken down into subskills. 'One possible decomposition is

shown in Figure 9. (Dashed lines are used to represent decomposition links and to
emphasize that the graph shown is not a CLOS class hierarchy.) In this decomposition the

key subskills are:

1. Understanding how the device operates

2. Identifying fault symptoms as deviations from normal behavior

3. Generating fault candidates that explain the symptoms

4. Choosing the most appropriate troubleshooting action given a set of fault candidates

and a the history of previous test results

5. Interpreting test results to reduce the set of possibly faulted parts

"The tutor's own troubleshooting capabilities would also need to be decomposed in the same

way. Then it could demonstrate and generate test questions for each subskill. Each

subskill would be an object of class skill with demonstrate and test methods defined for

that class. This ability to assess each subskill would allow more accurate identification of

problems the student might have.

The terminal nodes in Figure 9 represent skills that apply to individual domain objects. For

example, the skill can explain part roles applies to all objects of class part and can be

applied to any part. The skill can predict changes to all parts in each subcycle

applies both to parts and subcycles. When assessing this skill for individual parts the tutor

asks the student how the part changes state in each of the subcycles. When assessing this

skill for individual subcycles it asks the student to indicate the sequence of part changes that

occur in a subcycle. Some skills, such as can interpret result to eliminate

hypotheses, apply to test results or troubleshooting tests.

8.2 Representing skill acquisition and tutor uncertainty

The degree to which skills have been acquired is represented in the student model. More

precisely, the student model represents the tutor's beliefs about the student's skills. For
instance, the tutor may not believe that the student has a skill that he has just not yet

demonstrated.

26

CAN DIAGNOSE
FAULTS

CAN TAKE ACTIONS

CAN PREDICT CAN FIND I REDUCE THE SET -

WHATSTET VIOLATED OF FAULT CANDIDATES A FAULT

HAPPEN IN EXPECTATIONS CAN PROPOSE DIAGNOSIS

NORMAL DEVICE FAULTCANDIDATES I
OPERATION THAT EXPLAINI

CAN 1 VIOLATIONS

CA CAN_... CNCN NEPE

I PREDICT PERFORMI
TEST TESTS T -

RESULTSRESULTS
TO

UNDERSTANDS CAN PROPS ACAINS RAT
- ~~DEVICE CYCLE TROUBLESHOOTING ATOSBI A.IONSIACTIONS ELITY

CAN EL INTE I CAN INTERPRET

sREDUNDN T RESULTS TO

ICAN ELIMINATECAN LIST CHAN PESITO HYPOTHESES
SUBCCLESPARTS FOR EA*~

IN ORDER SUECYCLEI

I CAN PREDICT
CHANGES TO CANXPLAIN - t I

UNDERSTANDS PRWAIXR PARTS PART ROLES CAN

DEVICE FOR EACH CAN

STRUCTURE SUBCYCLE I CONSIDER
TEST COST I

CAN CONSIDER
CAN CONSIDER MALFUNCTION

PART CHANGE PROBABILITY! I COST

CAN
IDENTIFY CAN EXPLAIN

PRIMARY PART

PARTS RELATIONSHIPS

Figure 9. Decomposition of troubleshooting into subskills

A non-numeric representation of uncertainty is used to avoid the arbitrary use of numbers

for the relative strength of one belief compared to another. Some problems with purely

numeric representations are suggested by showing the kinds of questions that are difficult

to address with them:

1. How to select nwnbers-What weight should incorrect answers to multiple-choice

questions receive? True-false questions? Questions answered by pointing to parts?

Correct answers compared to incorrect answers in general?

27

2. How to interpret the numbers-If the weight for a prerequisite falls below 5,

assuming a scale from 1 to 10, should it be reviewed?

3. How to debug incorrect results-if a belief has certainty 3 on the same 10-point scale

but the instructor believes that it should be much higher, how was that number derived?

A more detailed discussion of different numeric representations of uncertainty and

problems associated with them is presented in [Murray, 91]. A more complete description

of the non-numeric endorsement-based approach to student modeling, is also provided.

We provide only a brief overview here.

This non-numeric approach uses pro and con arguments, called endorsements, to represent

arguments for and against the tutor's beliefs in particular student capabilities. The

advantage of this approach is that all conflicting arguments are retained, rather than being

coalesced into one number, and the tutor can take into account the context of a decision

when weighing different kinds of evidence.

Basic student performance data is called assessment data or assessments. Every piece of

assessment data is interpreted as an argument for or against the student having some

capability, either some general subskill, or a subskill applied to a specific domain object.

For example, a T/F question answered incorrectly could be an argument against the

student's ability to predict the operation of one particular hydraulic valve. Another multiple

choice question about selecting troubleshooting tests, answered correctly, could be a pro

argument for that troubleshooting skill in general. Each assessment is placed in a category

called its endorsement reliability class.

The comparison method described in [Murray, 91] uses a table that places the endorsement

reliability classes in a total ordering. Table 2 shows an example of one such ordering.

Conflicting arguments are resolved by a lexicographic comparison of pro and con

arguments that uses the table. Each belief is assigned a label BELIEVED-FALSE,

BELIEVED-TRUE, UNCERTAIN, or UNKNOWN (i.e., no data) based on the

comparison. In addition to the label the planner can examine the pro and con arguments

responsible for a particular belief.

28

Class Symbol Descripti'on
Data trends MM Consistent trends in student performance
Negative student self- ST- The student says he does not know something
assessment
Propagated disbelief PR- Argue that skill x cannot be known for class y

as it is not known for class (or instance) z and y
includes z

Tutor presentation TU+ , Argue that skill is krnwn as tutor has covered it
Label trends LT Assign class X the same label as most of its

children

Positive student self- ST+ The student says he knows something
assessment
Short-answer S/A The student answers a single short-answerSquestion I
Multiple-choice C The student answers a single multiple-choice

question

True-false T/F The student answers a single true or false
S~question

Inherited belief I+ Argue that class (or instance) y is known as its
superior class x is known

Default belief D Default belief

Table 2. One set of endorsement reliability classes

Now we consider how conflicting arguments are compared in more detail. There is a

default lexicographic comparison and a special case mechanism for overruling it. The

default lexicographic comparison first sorts all pro and con arguments for a belief according

to their endorsement reliability classes. Then it compares pairs of pro and con arguments,

starting with the most compelling arguments for each. When each pair of arguments

belongs to the same evidence reliability class then the next pair is considered. When there

is a more reliable pro or con argument in a pair, then the belief being considered is labeled

BELIEVED-TRUE or BELIEVED-FALSE (respectively) and this label is annotated with

the endorsement reliability class of the winning argument. This annotation can be used as a

measure of the strength of belief. Finally, if all pairs are balanced the label received is

either UNCERTAIN, if there was at least one pair examined, or UNKNOWN if there was

no data to examine.

In some cases it may be desirable to override this default comparison with special case

rules. For example, the default comparison labels BELIEVED-TRUE a belief supported by

a single multiple choice question answered correctly even if there are two true-false

questions answered incorrectly, assuming the reliability classes of Table 2. A special

purpose rule could instead label the belief UNCERTAIN or BELIEVED-FALSE.

29

In contrast to [Murray, 91], the ESM proposed here augments the lexicographic

comparison process with rules that specify special exceptions to the lexicographic

comparison process. Each rule has the following format: -

(rule <name> <condition> <label>)

where the condition is any predicate and the label is any expression that evaluates to

BELIEVED-TRUE, BELIEVED-FALSE, or UNCERTAIN. Each rule is tried in order and

the first rule to assign a label to a belief is used. If none assigns a label then the

lexicographic comparison routine is used as a default. The rule knowledge base initially

starts with just that one rule:

(rule default-lexicographic-comparison T (lex-compare pro con))

where pro and con refer to the pro and con arguments and lex-compare is the lexicographic

comparison routine.

Consider an example where we override default lexicographic comparison. Assume Table

2 provides the ordering of endorsement reliability classes and there are only two pieces of

assessment data to interpret. The most recent is a true-false question answered incorrectly,

thus a con argument of class T/F. The second assessment is a multiple-choice question

answered correctly at some previous time Thus it is a pro argument of class M-C. As it is

higher in the table it is a more compelling argument and will be believed if the default rule is

reached. But if we add the rule below:

(rule prefer-more-recent

(more-recent current-arg (predescessor current-arg))

(if (eq (label current-arg) 'PRO)

'BELIEVED-TRUE

'BELIEVED-FALSE))

then the student model assigns the belief label according to the value of the most recent

argument. As in this example it does not matter if there is an earlier argument, of higher

endorsement reliability class, that opposes it. The rule's condition applies to the example

above and its action is to assign a BELIEVED-FALSE label to the belief as the most recent

argument has a CON label.

These rules are important in two respects. First, they add increased flexibility to the ESM

beyond that originally discussed in [Murray, 911. Secondly, they provide the basis for a

30

knowledge acquisition tool that tracks rules that lead to faulty conclusions. The tracking

depends on explicit dependency links from rules to conclusions made with the rules.

The rule language presented above is very general. It requires knowledge of LISP and the
accessor functions and global variables defined for the ESM. The ability to write these
special-case rules increase the utility of the ESM. Eventually a more restricted data
interpretation language might be possible that could be us'ed directly by subject matter
experts.

8.3 Representing generalized student capabilities
Another advantage of the endorsement-based student model (ESM) is its representation of
the degree to which skills have been generalized. For example, consider the part hierarchy
shown in Figure 10. Class instances are shown in italics, pointed to by dashed arrows, the
rest are part classes.

HYDRAULIC
VALVES

LATCHABLE DIRECTIONAL
VALVES VALVES

UVK4 UVK9 UVKIO UVK5 UVK6

Figure 10. Sample part hierarchy

There can be many different skills that can be applied to each of these parts (e.g., predicting
operation, listing possible faults, predicting inputs given outputs, etc.) and t" ESM can

represent the tutor's beliefs about the student's capabilities for each of these. Beliefs about
superordinate nodes are beliefs about the student's capabilities with respect to one particular

skill that can be applied to any of the subordinate terminal nodes. For example, if the ESM
indicates that the can predict operation skill is believed true for the class latchable
valves then the tutor believes the student can predict the operation of any of the parts

UVK4, UVK9, or UVK10.

The ESM also infers new endorsements from a series of existing primitive assessments.
These new endorsements are called inferred endorsements. There are two kinds of inferred

endorsements: data trends and propagated endorsements. A data trend is inferred when

31

multiple data items support, or argue against, a skill for either a single object or class of

objects. A propagated endorsement reflects inheritance semantics. For example, an
argument that the student does not know the possible faults for parts of type directional

valves is also an argument that he does not the possible faults for a particular directional

valve, such as UVK5. These kind of inferred endorsements are discussed in more detail in

[Murray, 911.

8.4 Using endorsements to make decisions

The planner can examine a beliefs label and any part of its justification. The justification

includes both the rule that assigned the label and the endorsements that argue for and

against the belief.

This additional information allows a planner-controlled tutor to make context-sensitive

decisions. For example, when reviewing previously learned information the tutor can

accept the student's belief that he understands a topic or can perform a skill. This same

evidence (student self-assessment) can be considered insufficient when teaching the same

material for the very first time.

The ESM can be used in a non-planning tutor also. It can be used to select problems in

areas where the tutor believes the student needs practice or is uncertain of the student's

capabilities. Or it can be used to drive problem selection to precisely gauge a student's

troubleshooting capabilities if the tutoring system was instead used solely as an assessment

tool..

This completes discussion of .i..e endorsement-based student model. Additional discussion

of the implementation of the ESM using object classes and methods appears in Appendix

II.

9. Controlling the tutor with a dynamic olanner

This section describes how the Lower Hoist Tutor can be changed from a reactive learning

environment to a autonomous goal-following tutor that generates and carries out its own

plans. The enhanced tutor can still react flexibly to student requests and does not sacrifice

the ability to provide opportunistic instruction or to let the student explore or practice with

the device simulation.

32

9.1 The plan representation

The instructional plan for the Lower Hoist Tutor represents a single lesson. An earlier
version of the Lower Hoist Tutor, implemented in conjunction with the Blackboard

Instructional Planner, planned a sequence of lessons [Murray, 90r)]. The approach of
planning one lesson at a time is easier to implement. It should strike a better balance

between not planning at all, like most intelligent tutoring systems, and planning an entire
curriculum, like the Blackboard Instructional Planner.

The plan representation is a non-cyclic graph with three kinds of nodes: objectives,

activities, and procedures. These are connected by two kinds of links: achieves links-

indicating that one plan element is used to achieve a higher-level plan element-and
precedes links-indicating that plan elements of the same type are placed in an precedence

ordering.

Objectives, activities, and procedures are the same plan elements used in the Blackboard

Instructional Planner and described in [Murray, 90b]. They are briefly reviewed here.
Objectives represent instructional goals and provide a goal decomposition. Activities
represent pedagogical activities such as introducing a new topic, allowing practice, or

performing assessment. However, each activity could be performed in several different
ways. So the explanation of a topic could be done with a demonstration, or textually, or

through examples. Practice could be done with a set of stored problems, with generated
problems, or by allowing the student to use the device simulation however he wishes.

Each different way of performing an activity is a procedure. Procedures are executable

routines that are different ways of carrying out activities. They can have parameters that

allow them to be adapted to different tutorial situations. For example, a procedure to
present troubleshooting cases could receive parameters specifying the level of difficulty of

the cases and the kind of faults to present. Procedures also have a limited form of
interruptibility, allowing students to ask questions or make requests between different parts

of a procedure called procedure steps. These are logical divisions in a procedure. For
example, each question asked in a questionnaire could be considered a procedure step.

Figure 11 shows a simple example of the plan representation. Actual plans would be more
complex. The shaded circles are instructional objectives. The squares represent

instructional activities. Procedures are shown as diamond-shaped boxes in the sample plan

below. X-ed out circles indicate goals that are believed to be achieved already, either as the

33

result of tutor instruction or because the student has learned the information prior to using

the tutor. The student model determines when goals are achieved.

Lower hoist troub(eshoottn

troubEshooting

structure

h¶jdrauLw __ _

Parts

0 parfts Lnetructi~onaE qoaE
detctriAcaL

ports

"nWtt' prciew~espocedure

show dThe present exp•ore mutpL
roa•s nmod choice

Figure 11. Sample lesson plan showing plan representation

The downward pointing arrows are achieves links. The arrows with arcs connecting them

are AND-achieves links. This means that in order to achieve the higher level goal all the
lower level goals must be achieved. The downward pointing arrows without arcs are

refines links. This means that the activity and procedures selected achieve the goal. The

dashed arrows indicate a sequence of steps to be performed.

Each plan element is justified from other plan elements or from the student model.

Procedures are justified in terms of their activities. Activities are justified by the terminal

goal they achieve. All terminal goals are labeled as either achieved or unachieved and these

labels are justified by beliefs in the student model. Nonterminal goals are in turn justified

from their constituent goals.

34

The planner is a top-down refinement planner with no backtracking. Plan critics are used
to reorder parts of the plan and to add new plan elements that improve discourse quality.

Plan critics also watch for problems with the plan. When d critic notices a problem parts of

the plan may be replaced and attempted again. The next sections explain these processes of

plan generation and refinement in more detail.

9.2 Plan generation

The planner is an incremental lesson planner that defers complete plan elaboration. The

planner is dynamic as it responds to changes in the student model, to student questions and

requests, and to changes in time remuining. It plans in the sense of choosing an intended

sequence of goals and activities to carry them out. But unlike more sophisticated planners

such as SIPE [Wilkins, 88], it does not perform resotirce allocation, develop nonlinear

plans, deduce consequences of actions, or work in a goal-directed manner backwards from

desired situations to determine action sequences. Instead the planner is intended only for

intelligent tutoring systems where the most important resource is time and where there is

some leeway in the length of a lesson, so dealing with time is no: -i primary issue. The

planner prop used here is a simplification of the planner implemented in [Murray, 90b].

For a particular domain the instructor has pre-stored an instructional goal tree for the

planner's use. This goal tree is a graph of prerequisite skills, that also imposes a sequence

on skill acquisition. The goal tree need not fully specify this order, for example, it may
only specify that the student learns device structure before learning how the device

operates. The goal tree is not a complete plan as it does not specify instructional activities

or procedures appropriate for a student. It also may include objectives that a particular

student may have already achieved. No activities are planned for such objectives when the

plan is customized to the student.

In addition to the goal tree the instructor must provide two kinds of plan libraries. The first

is called an activities library. Recall that instructional activities are abstractions of

instructional actions that assist in achieving instructional goals. They are abstractions

because they do not commit to particular procedures to realize the activities, and typically

there are multiple procedures suitable for each activity. The second kind of plan library that

must be provided is a procedures library. This is a library of the procedures (execuatable

routines) that can be used for activities. An example of an activity is ASSESS-SKILL.

Procedures for that skill could include MULTIPLE-CHOICE-TEST or SHORT-

ANSWER-TEST.

35

A key difference from the earlier planner and a further simplification lies in the way
procedure parameters are initialized and adapted. Parameters in this simplified planner are
initialized, monitored, and adapted by each instructional procedure, rather than the planner.
This offloads some work from the planner and allows each procedure to apply specialized

knowledge of its task for these purposes.

Procedures are still decomposed into procedure steps that provide limited interruptibility.
Each procedure can be interrupted by questions or requests between procedure steps. The

procedure can save state and then either resume where it was interrupted or be reset by the

planner.

Planning primarily consists of selecting activity plans from the activities library and
instructional procedures from the procedures library. An activity plan is a sequence of

activities such as

I. motivate skill-explain how this skill fits in with other skills
2. demonstrate-show skill to student

3. explain skill-explain steps in procedure or component skills

4. practice skill--let student practice the skill
5. assess skill-see to what extent steps 1 - 4 succeeded in teaching the skill

Although a procedure typically consists of multiple procedure steps those steps are part of
the procedure, i.e., there are no procedure plans. The procedures library only specifies
individual procedures that can be used for individual instructional activities, such as any

one of the steps above.

The first step in the plan generation and delivery proct• i.- to copy the instructional goal

tree for the skill to be taught. Each skill that is believed known is marked as satisfied. For

each terminal instructional objective a single activity plan is selected. Then for each activity
in an activity plan a procedure is selected when that activity is ready to be executed. The

planner is incremental because procedures are not selected until an activity is the next to be
executed. A global switch could also allow the planner to be incremental at the activity
level. In that case an activity plan would not selected until an unachieved instructional

objective was next in line to be achieved.

Thus plan generation consists largely of multiple selections. For each goal one of the fixed
number of activity plans must be selected, taking into account the tutorial situation. For

36

each activity, one of the fixed number of procedures must be selected, taking into account

the tutorial situation. Each choice can be viewed as classifying planning situations coupled

with tutorial situations into one of several classes, where the classes correspond to the

elements of a plan library. It is this repeated use of classification and selection that

suggests that concept acquisition algorithms from machine learning may be applicable to

knowledge acquisition, as discussed in Section 10.

Plan critics and special-purpose rules for making the selections discussed above are also

part of the plan generation process. These refinements to the planning process will be

discussed shortly in Section 9.4

9.3 Plan revision
Plan delivery consists of executing procedures that are already planned, interleaved with the

selection of activity plans and procedures required to develop the plan sufficiently to
continue. Every element of the plan is justified in terms of beliefs about the student and
beliefs about the planning process itself. When new assessments are interpreted by the
endorsement-based student model, beliefs about the student may change and a plan element
may become no longer justified. When this happens a planner alert is recorded. Student
questions and requests that interrupt delivery also generate planner alerts.

Planner alerts are special conditions that interrupt plan delivery to signal anomalous

conditions. They alert the planner to some potential problem with the current plan
indicating that it may no longer correctly accounts for the tutorial situation. The student
model may have changed, the instructional objectives may have changed, or the time
resources may have changed. The following are the kinds of planner alerts that the planner
must be able to handle:

1. Prior goal unsatisfied -- an earlier objective that had been believed satisfied is no
longer satisfied.

2. Pending goal satisfied - a subsequent objective for which there are pending

activities or objectives is already satisfied. Perhaps the student learned the material
from the class or another student, or knew it all along and had just not demonstrated the
skill until this point

3. Current goal satisfied - the current instructional goal or one of its ancestors now
appears to be achieved even though all the activities or procedures set up for it are not

finished executing. The student learned faster than expected.

37

4. Student question or request- the student has asked a question or made a request.

5. Time threshold approaching - the normal time for a-lesson has about expired.

The means by which the planner architecture handles these alerts is discussed next.

These planner alert types are used to select activity subplans so that the plan can be adapted

or revised to fit the new tutorial situation. Note that the first three kinds of planner alerts

directly relate the student model and instructional plan and can be implemented by use of

the TMS dependencies between the two. When assertions in the student model become

OUT (no longer believed) then those parts of the plan that depend on them also become

OUT, causing a planner alert.

Most planner alerts are handled by splicing a new activity plan into the current plan to

handle the alert. Such a plan for handling questions might be

1. transition-away-suspend the current activity and explain the shift of discourse

topic.

2. answer-question--just answer the question directly.

3. transition-back--explain that the previous activity will now be resumed then

continue where it was left off.

The activity plan itself must be further refined to include procedures before that plan patch

can be executed. For example, there may be different ways of directly answering the

question that vary in level of detail and use of demonstrations.

Another kind of planner alert monitors the planner itself. For example, if the planner

attempts to reachieve the same objective twice a meta-level planner alert will be generated.

Meta-level planner alerts warn of a problem with the planner's approach in addressing

problems in the domain, rather than actual problems in the plan.

Each planner alert may have several activity plans that could be used to handle it. For
ýxample, the student question planner alert could have multiple activity plans, one to

answer the question, one to defer it, and one to explain why the question cannot be

answered. The choice of activity plan, both to handle planner alerts and to achieve

instructional objectives, is made by planning rules, discussed below.

38

9.4 Planning rules and plan critics

The planner requires some means of selecting activity plans, some means of selecting

procedures, and some means of selecting responses (activity plans) to planner alerts.

Planning rules are used to specify how selections are to be performed. These rules select
activity plans and procedures for their steps. The rules use the same format outlined in the

previous section so that knowledge acquisition utilities can apply to both plan rules, either

for generation or revision, and for data interpretation rules.

The planner also uses plan critics. Each plan critic can only add plan elements or

resequence them, but never change plan elements or delete them. These restrictions are

crucial to simplify tracing problems back to the faulty application of plan critics. The

library of plan critics would include critics such as the following:

1. ADD-INTRO - adds an instruction and lesson overview for a student.

2. ADD-REVIEW- adds a summary of what was covered in this lesson.

3. RELATE-MATERIAL - adds material that relates detailed topics to the main topic

to prevent the student from getting lost in details.

Most critics basically improve discourse flow or add activities to the instruction to enrich,

support, or reitiforce other activities. They could be used to detect and remedy other

potential problems, such as a lesson plan requiring more time than provided.

This completes the description of the planner architecture. For a new domain the instructor

must provide the goal tree, the activities library, and the procedures library. Selection rules

must also be provided for plan generation and for handling planner alerts.

This planner is a simplification of the planner developed in the Blackboard Instructional

Planner [Murray, 90b]. It builds on knowledge gained in the bla;kboard implementation of

that planner. The rules of this simplified planner play a similar role to the knowledge

sources of the earlier planner. But there is no blackboard agenda mechanism or scheduler

and the control mechanism and data structures of the planner described here are simplified.

The simplified planner should be easier to understand, more portable, and more efficient,

as there is less computational overhead. However, the blackboard-based planner has a

more flexible control structure that is more suitable for experimenting with more

sophisticated approaches to planning.

9.5 Integration of the planner and student model
The student model and planner are connected via dependency links. Changes to the student

model can cause instructional objectives to go OUT or come IN. In the first c-se (OUT)

39

they are no longer considered to be achieved and in the second case (IN) they are

considered to be newly achieved or reachieved. Either case leads to planner alerts.

Pseudo-English code for the planner and student model extensions to the tutor are given
belo v. Those places where knowledge acquisition can affect the results are marked by

asterisks (see next section for the discussion of knowledge acquistion).

To aenerate a lesson plan

Generate planner alert - student model needs initialization

Copy the goal network

For each goal
*If it is already achieved according to student model

then mark it as satisfied

else mark it as unsatisfied

If planning to the activity level

then

For each unsatisfied goal

*Select an activity subplan for it

Apply all plan critics

Deliver the lesson plan

To deliver a lesson plan

While there are unsatisfied goals after the current goal

Advance to the next unsatisfied goal

If it has an activity subplan already selected for it

then Select the next unexecuted activity step

else *Choose an activity subplan for it

Select the first activity

end If
*Choo..e a procedure for the selected activity step

Repeat until the procedure is finished

Execute the next procedure step

If there are any new assessments

then Update the student model

If part of the plan is no longer justified, or

there is a new question or request, or

40

the time left has about run out

then Generate a planner alert

end Repeat

end While

To handle a planner alert
*Select an activity subplan to handle it

Splice in the subplan
*As each activity step becomes current select a procedure

Resume execution of main plan

To update the student model

For each skill with new PRO or CON arguments

Collect all PRO and CON arguments for the belief

Order each set according to the reliability classes
*Apply special purpose rules

If none apply then use standard lexicographic comparison

To compare PRO and CON arauments lexicoaranhically

If there are no PRO and CON arguments left to compare

then

If any arguments were examined

then the result is UNKNOWN

else the result in UNCERTAIN

If there are no PRO arguments

then the result is CON

and the strength is given by the strongest argument

If there are no CON arguments

then the result is PRO

and the strength is given by the strongest argument

{Otherwise there is at least one more pair PRO & CON args)

Compare the strongest PRO arg to the strongest CON arg:

(Case 1) if the PRO argument is stronger

41

then the result is PRO

and the strength is given by that arg

(Case 2) if the CON argument is stronger

then the result is CON

and the strength is given by that arg

(Case 3) otherwise

{arguments equal or incomparable)

call this function recursively

on remaining arguments and return results

10. Knowledge acquisition tools

In this section we consider tools for knowledge acquisition. First we consider knowledge

base debugging tools and then the application of machine learning algorithms.

10.1 Knowledge base debugging tools

Two kinds of rules are used in the extensions proposed for the Lower Hoist Tutor. The

first kind of rule is a data interpretation rule used by the endorsement-based student model

to provide exceptions to a default lexicographic comparison. The second kind of rule is a
planning rule used to select items from one of the planning libraries. It is used for both

generation and revision of lesson plans.

Both kinds of rules have the same format and both explicitly record dependency links,

despite their differing functionality. When data interpretation rules execute, these links tie

data, student model beliefs, and the rules themselves. Similarly, when planning rules

execute, these links tie student model beliefs, plan elements, and the planning rules used.

These dependency links support the building of a graphical editor that allows a hypertext-

like examination of the support for plan elements or student model beliefs. Starting from a

plan element the editor can directly retrieve the planning rules and student model beliefs that

responsible for it. Student model beliefs lead to the data interpretation rules and

assessments that underly them. By examining this derivation trace faulty rules can be more

easily isolated.

42

This knowledge base debugging tool could also store previous sets of student data and
beliefs derived from them, along with sets of beliefs and plans derived from the beliefs.

These stored examples could be used to test new additions to the rule knowledge base for
consistency with earlier rules. If a previous example no lenger produced the same result
this discrepancy can be shown. The discrepancy indicates an inconsistency between the
new rule and earlier rules, or some situation not previously accounted for by the earlier

rules.

10.2 Application of machine learning algorithms

The area of machine learning that is best understood is that of concept learning. Concept
learning algorithms can be applied to classification tasks. Each class defines a concept that
represents the distinguishing features of that class compared to the others.

To the extent that the planning problem can be reduced to a classification problem these

algorithms can then be applied. To apply these algorithms to the planner design of Section

9, features of lesson plans and tutorial situations would need to be related to the selection of
activity plans and procedures. If useful features can be selected that are predictive of the
most appropriate activity plans and procedures then these algorithms can be applied.

Another approach, case-based reasoning, could replace the use of rules in the endor-.ment-
based student model. With this approach the student model assigns a belief label by
retrieving the most similar previous case of data interpretation of PRO and CON arguments

and using that label. Initially the labels would have to be provided until a sufficient case
library was acquired. The challenge with this approach would be to choose an appropriate
case retrieval mechanism. For example, if the current case compares two PRO arguments
of one evidence reliability class to a single CON argument of the next higher reliability class

there may be multiple cases that could be considered. One might contain a similar situation

that occurred but using two other evidence reliability classes. Another might use the same

classes but compare two CON arguments to one PRO arguments. A third case might
compare three PRO arguments to two CON arguments.

11. Related work

The Lower Hoist Tutor builds on several systems. It directly incorporates elements from
the Blackboard Instructional Planner [Murray, 90b] and Endorsement-based Student Model

[Murray, 911. It changes the planner by simplifying it and directly linking it to the student

43

model through the idea of justifying plan elements. The student model has also changed: it

incorporates special-case exception rules and is implemented with object classes and

methods. This object-oriented implementation makes it easy to implement overlay [Carr

and Goldstein, 771 student models by allowing one class, such as the part class, to inherit

student model functionality.

The Lower Hoist Tutor has adcptcr. several ideas originally implemented in IMTS [Towne

and Munro, 89], especially with regard to its approach to fault diagnosis. The use of a

fault-effect table was adopted from IMTS. The qualitative model of the device also adopts

the approach used by IMTS of characterizing parts by ports, states, and behavior rules.

However, unlike IMTS, the rules are implemented as methods in an object-oriented

environment designed to facilitate portability and reusability. The graphics interface also

uses Hypercard-based tools, that are unlike the graphics of IMTS.

STEAMER [Hollan et al., 84] is another system that has greatly influenced the Lower

Hoist Tutor. The tutor presented here continues in the object-oriented style that STEAMER

used and also proposes instruction generated from device and part type descriptons, as

STEAMER did. However, STEAMER was intended to teach operating procedures,
whereas the Lower Hoist Tutor is int,'nded to teach troubleshooting. Both require the

teaching of a mental model of device operation.

12. Conclusion

The extensions discussed for the planner and student model raise various questions for

future research. How useful is a tutor that can plan versus a purely opportunistic tutor?
How useful is an endorsement-based student model compared to numeric student models?

Is the truth maintenance system a good approach to coupling student models and planners?

The knowledge acquisition tools also raise another set of questions. To what extent can

machine learning techniques be usefully applied to knowledge acquisition in intelligent

tutoring systems? Can a similar mechanism apply to both data interpretation and planning

rules? Can concept learning algorithms be applied to planning by reducing planning to

classification?

44

The implementation of the Lower Hoist Tutor shows that much can be done with current

tools, even though the research questions above are unanswered. It is now much easier to
build intelligent tutoring systems that run on a variety of platforms and programming
languages than it was a few years ago. Hypercard-based tools greatly simplify the

engineering of the graphics. Typically graphics was a large part of the effort required to
build a complete system. Now device schematics can be scanned in and interactive
functionality added easily, along with animation. Object-oriented programming

environments and standards (e.g., CLOS) also facilitate construction and portability of

intelligent tutoring systems.

There are many potential practical applications of these systems. The graphic and

qualitative device simulation can be used in isolation just as a classroom training aid. The
graphics can be projected to a classroom or run on multiple workstations. The instructor

can control the device simulation and use it to illustrate normal and faulted operation, and to

explain how to troubleshoot various faults. The students could inject faults into the model

and watch the instructor troubleshoot, or take turns troubleshooting faults that the instructor

has inserted.

Complete instructional systems can also be fielded outside of the classroom where
equipment is used. These systems can provide practice when needed, or deliver primary or
remedial instruction on requested topics. They can be used for entry-level training and

assessment of troubleshooting skill. They can be coupled with on-line documentation to
provide additional help illustrated with dynamic device models.

As machinery in industry and the military continues to grow in complexity the need for

classroom aids and instructional systems such as these will increase. And as long as there

is a proliferation of delivery platforms, operating systems, and programming languages
portability will be an important feature for such systems. Portability across domains and

the ability to reuse device and tutor components will become increasingly important as
larger instructional systems are built for devices that have tens of thousands of components

and hundreds of schematics.

Acknowledgements

I would like to thank Dr. Kurt Steuck of the Armstrong Laboratory, Human Resource
Directorate (formerly AFHRLIIDI), for technical guidance during this effort.

45

[Brown et al., 75] Brown, J. S., Burton, R. R., and Bell, A. G. SOPHIE: a step towards

a reactive learning environment. International Journal Man-machine Studies. Volume 7.

Pages 675 - 696.

[Carr and Goldstein, 771 Carr, B., and Goldstein, I.P. Overlays: a Theory of Modeling

for Computer-aided Instruction. Massachusetts Institute of Technology. Al Lab Memo

406.

[De Kleer, 86] De Kleer, J. An Assumption-based TMS. Artificial Intelligence, Volume

28, Number 2.

[De Kleer and Williams, 87] De Kleer, J., and Williams, B. Diagnosing Multiple Faults.

Artificial Intelligence, Volume 32, Number 1. Pages 97 - 130.

[De Kleer et al., 891 De Kleer, Forbus, and McAllester. Truth Maintenance Systems.

Tutorial SA5, Eleventh International Joint Conference on Artificial Intelligence.

[Hollan et al., 84] Hollan, J. D., Hutchins, E. L., and Weitzman, L. STEAMER: an

interactive inspectable simulation-based training system. AI Magazine, Volume 5, Number

2. Pages 15 to 27.

[Murray, 90a] Murray, W.R. A Blackboard-based Dynamic Instructional Planner. FMC

Technical Report No. R-6376. Notes: ONR Final Report The conference paper below

summarizes this report, which presents full details of the Blackboard Instructional Planner

and an earlier version of the Lower Hoist Tutor.

[Murray, 90bh Murray, W.R. A Blackboard-based Dynamic Instructional Planner.

Proceedings Eighth National Conference on Artificial Intelligence. July 29, 1990 - August

3, 1990. Pages 434 - 441. Notes: This paper is drawn from the final report listed above.

[Murray, 91] Murray, W.R. An Endorsement-based Approach to Student Modeling for

Planner-controlled Tutors. Proceedings 12th International Joint Conference on

Artificial Intelligence. August 24 - 30, 1991. Pages 1100 - 1106.

46

[Towne et al., 83] Towne, D., Johnson, M., Corwin, W. A Performance-based

technique for assessing equipment maintainability. Behavioral Technology Laboratories.

Department of Psychology, University of Southern California. Technical report no. 102.

[Towne and Munro, 89] Towne, D., and Munro, A.. ONR Final Report: Tools for

Simulation-based Training. Technical report no. 113. USC Belaviorai Technology

Laborabories.

[Wenger, 87] Wenger. E. Artificial Intelligence and Tutoring Systems. Morgan

Kaufmann.

[Wilkins, 88) Wilkins, D. Practical Plannig, Extending the Classical A Planning

Prdgm. Morgan Kaufmann.

47

Appendix l-Imnlementing semantic networks with obiects

This appendix describes how ISA and PART-OF semantic networks can be implemented in

object-orientcp programming languages.

1.1 ISA and PART semantic networks

Semantic networks, also called conceptual hierarchies, can be used to represent knowledge

about the device being taught. Two kinds of semantic networks are commonly used, both

of which can be implemented by the classes and methods of an object-oriented

programming language.

The first kind of semantic network is an ISA ietwork. Nonterminal nodes represent

conceptual classes. If one class is below ano, .er then it specializes it. The objects of the

subclass are in a more specific category tidn those of the parent class. For example, in the
netv.)rk shown in Figure 12 the hydraulic valves consists of two classes: latchable
valves and directional valves. The terminal nodes in this tree, the ones whose names

appear in italics, are the names of parts in each subclass. This kind of semantic network is
called an ISA hierarchy as each link can be considered an ISA link (i.e., UVK4 is a
latchable valve, a latchable valve is a hydraulic valve, etc.).

HYDRAULIC
VALVES

LATCHAF?.E DIRECTIONAL
VALVES VALVES

UVK4 UVK9 UVK/0 UVKS UVK6

Figure 12-An ISA hierarchy

ISA hierarchies can be directly implemented in object-oriented languages. To avoid

confusion we will use the terms conceptual class and class member when referring to a
conceptual hierarchy, and we will use the terms object class (or just class if it is clear from

the context) and instance when referring to class hierarchies in an object oriented language.

49

The first refers to an abstraction, the second to an implementation. Confusion can occur as

ISA hierarchies can almost be directly implemented as object class hierarchies, but another

kind of hierarchy (the PART-OF hierarchy, discussed below) cannot.

The ISA semantic network of the example can be directly implemented as an object

hierarchy in an object-oriented language such as CLOS. For example, if properties are

defined for the class hydraulic valves they will be inherited, i.e., also present, for all

instances. This inheritance of slots in an object-oriented implementation mirrors the

abstract notion of inheritance in a semantic network where class members inherit properties

of their parent classes.

In a PART-OF semantic hierarchy the nonterminal nodes represent subassemblies
(component structures) of their parent nodes. Terminal nodes represent parts that are not

further subdivided. Figure 13 shows an example of a PART-OF hierarchy. Each link

means "part of", e.g., UCK2 is a part of the latch valve assembly and the latch valve

assembly is a part of the lower hoist assembly.

LOWER HOIST
ASSEMBLY

LATCH VALVE CONTROL VALVE
ASSEMBLY ASSEMBLY

UCK2 UVK9 0UVK1OIK

Figure 13-A PART-OF hierarchy

This hierarchy differs from the ISA semantic network because class members do not

necessarily inherit properties from parent nodes. If we implemented the classes shown in

Figure 13 as object classes in CLOS they would inherit these properties, so a direct

implementation cannot be done.

Even with the earlier ISA hierarchy (see Figure 12) there is a problem with a direct

implementation. We would like to be able to examine properties of the classes in the

semantic network. These are not directly accessible in most object-oriented languages.

Only the instances are readily accessible. For example, although there are instances for

50

each class member (e.g., UVK4 in Figure 12), there is no instance for the class latchable

valves.4

One solution is to create a single object of class concept hierarchy that represents either

a conceptual class or a class member for either kind of semantic network. Slots for each

object will point to any parent class, subclasses, or instances. Another slot will indicate
whether the object represents a class in a semantic network or a class member. Then the

PART-OF hierarchy of Figure 13 can be implemented by creating instances of these objects

and then setting the slots to mirror the network structure of Figure 13.

A similar approach can be used for the semantic network of Figure 12. But to implement

inheritance of domain specific slots, such as the number of states a valve can be in, user

defined classes are additionally provided that correspond to the classes in the concept

hierarchy in Figure 12. These are shown in Figure 14.

User defined class
HYDRAULIC

VALVES

I I
User defined class User defined class

LATCHABLE DIRECTIONAL
VALVE VALVES

U V ALu7I9VES Q VAVE links show object class hierarchy
UVK4F K UVKIOF5 K

instances of class instances of class
Latchable valves Directional valves

Figure 14. Object hierarchy to implement inheritance of ISA hierarchy

A second set of objects, all of class concept hierarchy, represent the class / subclass /

member relationships as shown in Figure 15. To summarize, the first set of classes and

instances in Figure 14 implement the inheritance of slots and methods in Figure 12. The

second set of instances shown in Figure 15 represent the network structure and provide

access to instances that represent the conceptual classes of Figure 12.

4 Actually in CLOS one could access a CLOS object of class standard-class that corresponds to the user-

defined class. But no such object would exist in C++.

51

links reflect parent and child HYDRAULIC instance of class
values in instance slots VALVES Concept hierarchy

instance of class LATCHABLE DIRECTIONAL instance of class
Concept hierarchy VALVES VALVES Concept hierarchy

K t] rl
UVK4 UVK9 UVK1O UVK5 UVK6

instances of class
Concept hierarchy

Figure 15. Linked instances of class concept hierarchy to represent class-subclass-

member relationships in ISA hierarchy

Methods defined for all objects are inherited to individual instances in the first hierarchy.

So, for example, methods that predict part state changes are defined in the first hierarchy.
A simulate-operation method is defined for the class latchable-valves that applies to

all of its instances. A different simulate-operation method is defined to apply to the

class directional valves and all of its instances. Methods defined for both conceptual
classes and class members are defined in the second hierarchy. So, for example, student

modeling methods that represent the degree to which skills have been generalized are

defined in this hierarchy. Such methods are defined for the class concept hierarchy and
can apply to instances that represent either individual parts or classes of parts. In this way

the titor can represent the extent to which a skill has been learned for a class of parts.

In CLOS the second network (the objects of type concept hierarchy) can be constructed

automatically as the first network is defined. The Lower Hoist Tutor defines an after-init

method for the CLOS class standard-class. This method defines a new object instance

of type concept hierarchy after each user-defined class is added. It is called an after-
init method because it is called after each instance is initialized. For example, when the

user defines the CLOS class hydraulic-valves this method will create an instance of

class concept hierarchy to represent that conceptual class.

Links between instances of the concept hierarchy class are added automatically by a

second method. This method is a second after-init method for objects of type concept
hierarchy. It accesses the CLOS class object, an instance of class standard-class, that

is being represented by the instance of class concept hierarchy. It can determine the

52

superclasses of that class from CLOS internal accessors. Next it can add links between the

instances representing parent and child classes. So if the user-defined CLOS class

hydraulic-valves has a single super class part, also user-defined, then the concept

hierarchy instance for the first will be linked to the concept hierarchy instance of the

second. As the user-defined classes are defined the concept hierarchy instances are

created and linked together.

1.2 Implementation in an object-oriented language

Now we can provide an overview of how the tutor is implemented using objects. The top

level of the object hierarchy is shown below:

TUTOR OBJECT

S... get superclass
DOMAIN CONCEPT get subclass
OBJECT HIERARCHY get members

Ii' I
ISA HIERARCHY PART HIERARCHY

IYPART1TYPE AT
CLASSIFICATIONS BREAKDOWN

III II •CYCLE

PROBE TYPE BREAKDOWN
CLASSIFICATIONS SSILL

BREAKDOWN

- I
PART CYCLE
sinlate get preconditions

operation I
PROBE

perform test

Names inside boxes denote semantic networks
implemented with objects of this CLOS class

Figure 16. Top level class hierarchy in object-oriented implementation

53

AUl objects used in the tutor inherit from tutor object. Objects specific to a domain, such
as part names and structures, or the names of specific troubleshooting tests (called probes
here) are also part of the domain object class. Different cycles of the device
corresponding to different operating modes are also part of this class. Objects of type
concept hierarchy represent nodes in either a ISA or PART-OF semantic r.-twork.

Examples of class methods are shown in italics. For example, the part class has methods
to simulate the operation of specific parts. Objects of type concept hierarchy have
superclass, subclass, class members, and type (indicating whether class or member)
methods.

Most of the qualitative model of device operation is implemented by methods defined on the
part class or its subclasses (shown later). Most of the student model is implemented by
methods defined on objects of type concept hierarchy. Methods to demonstrate,
assess, or explain troubleshooting skills are defined on the class skill, a subclass of the
part hierarchy class. Methods to explain the operation of parts or test the student's
understanding of the operation of parts are defined as methods on the part class.

54

Appendix IT-An obiect-oriented imnlementktion of the ESM

The Lower Hoist Tutor has only a partial implementation of the ESM that is not yet coupled
to the planner discussed in Section 9. Object classes are defined for different endorsement
reliability classes and for endorsements themselves. Another object class is defined to

allow endorsements to be associated with skills that apply to an object. This latter class is
intended to be a mixin, that is, it is to be added to some other class, such as the class part,
so instances of that class inherit both methods associated with that class (e.g., defining
how the parts operate) and the ability to store endorsements associated with skills that apply
to that object.

Pro~pagated and inferred endorsements are linked to the endorsements or assessments they
depend on through a truth maintenance system, the justification-based truth maintenance
system (JTMS) of De Kleer [De Kleer et at., 891. This mechanism ensures that all inferred
endorsements are updated automnatically when necessary. The JTRE rule-based production
language used in [Murray, 91b] is not used currently as all ESM functionality is
implemented in LISP and CLOS. However, the JTRE is one possibility for implementing
the rule language discussed in Section 8 for special-case rules and for storing dependencies
between data interpretation rules and their conclusions. The special-case rule language has
not been implemented yet.

55

